Linear Algebra II
05/07/2013, Thursday, 09:00-12:00

1 (1345=18 pts) Gram-Schmidt process

Consider the vector space C[—1, 1], i.e. the vector space of continuous functions defined on the
interval [—1,1], and the inner product

(f,9) 2[1 f(x)g(z) d.

(a) By applying the Gram-Schmidt process, find an orthonormal basis for the subspace spanned
by {1, z,22}.

(b) Find the coordinates of the function 1 + #? in the orthonormal basis obtained above.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process.

SOLUTION:

(1a):

We begin with computing the involved inner products:
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By applying the Gram-Schmidt process, we obtain:
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(1b): We have

T+ 22 = (14 2% u)ug + (1 4+ 22 ug)ug + (1 + 22, uz)us
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2  (2+44+4+4=14 pts) Eigenvalues

Let M € R** with the characteristic polynomial pys(A\) = A* — 1.

(a) Is M nonsingular? Why?

(b) Is M symmetric? Why?

(¢) Is M diagonalizable? Why?
)

(d) Show that M ~2 = M?.

REQUIRED KNOWLEDGE: eigenvalues, eigenvectors, diagonalization, Cayley-Hamilton
theorem.

SOLUTION:

(2a): A matrix M is nonsingular if and only if zero is not one of its eigenvalues, that is pps(0) # 0.
Note that pp(0) = —1. Hence, the matrix M is nonsingular.

(2b): All eigenvalues of a symmetric matrix are real numbers. The eigenvalues can be found by
solving the equation pps(A) = 0. This results in \y = —1, Ay = 1, A3 = —i, and Ay = 4. As such,
the matrix M cannot be symmetric.

(2c): A sufficient condition for diagonalizability is to have distinct eigenvalues. Then, it follows
from the previous subproblem that the matrix M is diagonalizable.

(2d): We know from the Cayley-Hamilton theorem that pps(M) = 0. This means that M* = I.
By multiplying both sides by M 2, we obtain M? = M 2.




3 ((2+8)+(3+4+5)=22pts) Positive definiteness

(a) Consider the function
- -4, -4
fwy,2) =~y s by — o -2y - 2
(i) Verify that (1,1,1) is a stationary point.
(ii) Determine whether this point is a local minimum, local maximum, or saddle point.

(b) Let A be a symmetric positive definite matrix and B be a symmetric nonsingular matrix.
Show that
(i) A is nonsingular.
(ii) A1 is positive definite.
(iii) B% — 21 + B~? is positive semi-definite.

REQUIRED KNOWLEDGE: positive/definite matrices, leading principal minor test for
positive definiteness.

SOLUTION:

(3a-i): Let’s find the partial derivatives with respect to the variables:
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Therefore, (1,1,1) is a stationary point.

(3a-ii): To decide the nature of this stationary point, we look at the Hessian matrix:
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Since its diagonal elements are not positive, H cannot be positive definite. To check whether it is
negative definite, we can check positive definiteness of —H. Note that

5 0 0
-H=|0 5 -1
0 -1 5

This matrix is positive definite as the principal minors are, respectively, 5, 25, and 120. Therefore,
the Hessian is negative definite and the stationary point (1,1, 1) corresponds to a local maximum.

(3b-i): Since the matrix A is symmetric positive definite, all its eigenvalues must be positive.
Therefore, zero is not an eigenvalue of A. Consequently, A is nonsingular.



(3b-ii): Let  be a nonzero vector. Note that
T A e = yT Ay

where x = Ay. Since A is nonsingular, y is nonzero. Then, it follows from positive definiteness of
A that
zTA 2 >0

for any nonzero vector z. Consequently, A~ is positive definite.
(8b-iii): Note that B2 — 2] + B=2 = (B — B~1')(B — B7!). Since B is symmetric, we have
B*-2I+B?=(B-B YHY'(B-B™
and hence
2P(B? -2l +B )z =2T"(B-B Y (B-B Yz=|(B-B YHz|*>0.

This means that B? — 21 + B2 is positive semi-definite.




4  (10+(3+5)=18 pts) Singular value decomposition

(a) Find the singular value decomposition of the matrix

o

OO =N
S O N
(el )

(b) Consider the decomposition
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(i) Is this a singular value decomposition? Why?

(ii) Find the closest (with respect to the Frobenius norm) matrices of rank 1 and 2.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

SOLUTION:
(4a):
Note that
2 1 0 0 % ; 8 5 4 0
Sl PR N CR
0 0O

Then, the characteristic polynomial of AT A can be found as:
p(A\) = det(ATA— M) = —(A—4)((A—5)> — 16).

This means that the eigenvalues of AT A are

To diagonalise AT A, we need to compute its eigenvectors. For A; = 9, we should solve:

—4 4 0
(ATA—9)v; = | 4 —4  0|wv =0.
0 0 -5
This leads to
1
v = 1 1
1= —
V2 1o



Similarly, by solving

1 4 0
(ATA—4lwy = [4 1 0| vy =0,
0 0 O
we obtain
0
Vg = 0
1

as the normalized eigenvector for Ao = 4. Finally, we solve

4 4 0
(ATA—Dwvs=14 4 0|lvg=0
0 0 3
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1
V3 = i -1
V2| g
Therefore, AT A can be diagonalized by the orthogonal matrix
1/v/2 0 1/V2
0 1 0
that is

5 4 0] [1/vV2 0 1/V2 1/v2 0 1/v/2][9 0 0
4 5 0f [1/vV2 0 —1/vV2|=|1/vV/2 0 —1/v2| |0 4 0
0 0 4 0 1 0 0 01

Since the number of non-zero singular values is 3, we have rank(A) = 3. Then, we get
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To obtain the last column of U, we need to find an orthonormal basis for the null space of AT.
Note that
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Therefore, we get

N(AT) = span(
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This leads to

o O O

Uyg =
1

Consequently, a singular decomposition for A can be given as

1/v2 0 1/¥v2 0][3 0 0
e 1/vV2 0 —-1/v/2 0] |0 2 0 1/\/3 1/‘/2 (1)
B 0 1 0 0f (0 0 1
0 0 0o 1] [0 o of L/v2 —1/v2 0
(4b-i): Note that the two matrices
1 1 1 1
2 2 2 2 2 2 1
1 .1 _1 1 3 3 3
2 2 2 2 2 12
11 1 _1 and 33 3
2 2 2 2 1 2 2
1 1 1 _1 3 3 3
2 2 2 2
are orthogonal. Also, note that the matrix
12 0 0
0 6 0
0 0 0
0 0 0

is of the required form for the singular value decomposition. As such, we can conclude that the
given decomposition is a singular value decomposition.

(4b-ii): The best rank 1 approximation can be found as:

i1 1 1

2 2 2 2 2 2 1
l7lill1200 5 3 3 4 4 2
2222000_2 12_442
1 _1 1 _ 1 0 0 O 3.3 3|7 14 4 2
2 T2 2 T2 12 2

L L L L 0 0 O 3 —3 3 4 4 2
2 2 T2 T2

The rank 2 approximation is the matrix itself as it is of rank 2.




5 (5+13=18 pts) Diagonalization and Jordan form

(a) Consider the matrix
a b
1 a
where a and b are real numbers. For which values of (a, b) is this matrix diagonalizable?

(b) Consider the matrix
2 1 0
A=1[-1 0 0
0 01
Show that det(A — A) = (A — 1)3. Put it into the Jordan canonical form.

REQUIRED KNOWLEDGE: diagonalization, Jordan canonical form.

SOLUTION:

(5a): The characteristic polynomial for the matrix
a b
1 a

p(A) = (A —a)* —b.

can be found as

Observe that the eigenvalues are distinct if and only if b £ 0. In this case, the matrix is diagonal-
izable. If b = 0, we have the matrix

a 0

)

The eigenvalues are A\; = Ao = a. To find the eigenvector, one solves the equation:

0 0
[1 0:|£U—O.

Clearly, there is only one linearly independent eigenvector. Hence, this matrix is not diagonalizable.
Therefore, we arrive at the conclusion that the given matrix is diagonalizable if and only if

b+ 0.

(5b): Note that

This proves the first part.



Note that the eigenvalues are A\ = Ao = A3 = 1. For the Jordan canonical form, we begin by
finding out the eigenvectors:

1
0=(A-Dv=|-1 -1
0

This leads to, for instance, the two linearly independent eigenvectors:

0 1
z= 10 and y=|—-1
1 0

Also note that (A — I)? = 0. This means that there will be two Jordan blocks. Finally, we need
to check the feasibility of

(A-D2' =z and (A-Dy =y.
Note that
x) +
(A-D2' = | -2} — o},
0
Then, (A — )2’ = x is not solvable. Also note that

Y1+ s 1
(A-Dy = |-y —y3| = | -1
0 0
yields, for instance,
1
y' = |0
0

Consequently, we arrive the following Jordan canonical form:

2 1 0] (0 1 1
-1 0 0] [0 -1 Of=
0 0 1] |1 0 0
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1
-1
0
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